Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geo-Synthetic: Reinforced Earth Beds under Moving Load
نویسنده
چکیده
Abstract—In this paper, analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill-poor soil system overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behaviour of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedal iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil–foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include magnitude of applied load, velocity of load, damping, ultimate resistance of poor soil and granular fill layer. Range of values of parameters has been considered as per Indian Railway conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil–foundation system.
منابع مشابه
On the response spectra of cracked beams under different types of moving force
In this paper, the dynamic responses of cracked beams under different moving forces, including moving load, moving mass, moving oscillator, and four-degrees-of-freedom moving system, are investigated. Structural elements such as beams are designed to withstand the predicted loads, but unfortunately, they are always exposed to unpredictable damage such as cracks. Several factors may cause these ...
متن کاملApplication of linear and nonlinear vibration absorbers for the nonlinear beam under moving load
Recently, a large amount of studies have been related to nonlinear systems with multi-degrees of freedom as well as continuous systems. The purpose of this paper is to optimize passive vibration absorbers in linear and nonlinear states for an Euler-Bernoulli beam with a nonlinear vibratory behavior under concentrated moving load. The goal parameter in the optimization is maximum deflection of t...
متن کاملStructural Analysis of Unsymmetric Laminated Composite Timoshenko Beam Subjected to Moving Load
The structural analysis of an infinite unsymmetric laminated composite Timoshenko beam over Pasternak viscoelastic foundation under moving load is studied. The beam is subjected to a travelling concentrated load. Closed form steady state solutions, based on the first-order shear deformation theory (FSDT) are developed. In this analysis, the effect of bend-twist coupling is also evaluated. Selec...
متن کاملThe analysis of a Beam Made of Physical Nonlinear Material on Elastic Foundation Under a Harmonic Load
ABSTRACT: A prismatic beam made of a behaviorally nonlinear material situated on nonlinear elastic foundation is analyzed under a moving harmonic load moving with a known velocity. The vibration equation of motion is derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam can be calculat...
متن کاملThe Effect of Axial Force Variations on Nonlinear Modeling and Seismic Response of Reinforced Concrete Structures
In order to increase the accuracy of evaluating seismic response of structures, it is critical to conduct dynamic analyses based upon precise nonlinear models being as consistent as possible with the real conditions of corresponding structures. The concentrated plasticity model including one elastic element and two nonlinear spring elements at both ends has been considered within the research c...
متن کامل